Technological applications of rotary hearth furnaces

- Preheating before forging
- Preheating before hardening

Typical load types

- Forging industry: drope stampings
- Automotive industry: crankshafts, shafts, piston pins, gearbox components
- Aircraft industry: gear wheels, engine components
- Machine industry: shafts, sleeves, gear wheels
- Tool industry: saw blades, tools
- Other subassemblies: casting moulds, fine parts on trays

Versions available

- Heating system
 - electrically heated furnaces (RHE)
 - gas fired furnaces (RHG)
- Atmosphere options
 - furnaces to operate with protective atmosphere
 - furnaces to operate with air atmosphere or combustion
- Loading options
Rotary hearth furnace construction combines advantages of both continuous and chamber furnaces. Rotary furnaces ensure continuous work flow compact design that uses a minimum of floor space.

- Working temperature: up to 1300°C
- High temperature uniformity
- Overpressure control
- Step-less control of the hearth rotation speed
- Flexible operation

Key construction features of rotary hearth furnaces

- Working temperature: up to 1300°C
- High temperature uniformity
- Overpressure control
- Step-less control of the hearth rotation speed
- Flexible operation

Main advantages

- Work flexibility and high reliability
 - easy service and maintenance
- Economical
- Low consumption of technological mediums
- High quality parts
 - no scale and decarburization
 - high repeatability of processes
- Fully automated
 - quick loading and unloading of the load
- Construction accommodates operation in industrial conditions
- Safe operation
- Conformity with the AMS 2750 D